数苑藕舫论坛(2024年第79期):特邀南京大学李春教授作学术报告

发布者:贾继红发布时间:2024-11-07浏览次数:10

报告题目:Numerical eigenvalue problems for singularly perturbed nonlinear Schrődinger operators

报告人: 李春 教授

报告时间:2024119日(周六)下午2:30-3:30                                      

报告地点:藕舫楼802

主持人:  汪佳玲 副教授

报告摘要:This Linear and nonlinear Schrődinger operators with singular distributional potentials supported on discrete sets occur in many practical applications of modern science. The related studies concerning spectral properties and scattering quantities have attracted remarkable attentions in both mathematics and physics. We will report some recent progress achieved for several typical resulting nonlinear eigenvalue computation problems in one and more space dimensions. A series of finite difference interface schemes including gradient-flow methods are proposed in Cartesian as well as polar coordinates, convergence analyses based on linear resolvent technique and nonlinear variational method are addressed to some extent and numerical experiments are represented time and again to validate our theoretical results. This is joint work with Profs. Jiejing Bai, Xinyan Niu and Linghua Kong.

报告人简介:李春,南京大学数学学院教授,博士生导师。研究兴趣主要集中在确定与随机保结构算法、四体原子分子精密谱理论与计算等,相关研究论文发表在J. Comput. Phys.Numer. Math.SIMA J. Numer. Anal.Phys. Rev. Lett.Phys. Rev. A等国际学术期刊上。

 

欢迎广大师生踊跃参加!

 

数学与统计学院

江苏省应用数学(南京信息工程大学)中心

江苏省系统建模与数据分析国际合作联合实验室

2024117