报告题目:Global in time probabilistically strong and Markov solutions to stochastic 3D Navier Stokes equations : existence and nonuniqueness
报告人:朱蓉禅 教授
报告时间:2021年05月20日(星期四)下午4:00-5:00
报告地址:腾讯会议 ID:530 808 045;会议密码:0519
链接地址:https://meeting.tencent.com/s/atTKiiGdCmUC
邀请人:吕广迎 博士
主持人:吕广迎 博士
报告摘要:We are concerned with the three dimensional incompressible Navier--Stokes equations driven by an additive stochastic forcing. First, for every divergence free initial condition in $L^{2}$ we establish existence of infinitely many global-in-time probabilistically strong and analytically weak solutions, solving one of the open problems in the field. This result in particular implies non-uniqueness in law. Second, we prove non-uniqueness of the associated Markov processes in a suitably chosen class of analytically weak solutions satisfying a relaxed form of an energy inequality. Translated to the deterministic setting, we obtain non-uniqueness of the associated semiflows. This talk is based on joint work with Martina Hofmanova and Xiangchan Zhu.
报告人简介:2012年获中科院数学与系统科学院和德国比勒菲尔德大学博士学位,现在北京理工大学工作,2019年获得国家自然科学基金优秀青年基金项目。主要研究兴趣是随机偏微分方程和狄氏型理论等,目前已在概率论著名期刊Ann. Probab.、Stoc. Proc. Appl.等发表多篇高水平SCI论文
研究方向:偏微分方程和随机微分方程的控制理论。
欢迎广大师生踊跃参加!
南京信息工程大学数学与统计学院
2021年5月17日