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Highly efficient structure-preserving algorithms for Gross-Pitaevskii

equations via model reduction
BOCH R R

Abstract: In this report, we design efficient structure-preserving algorithms for the Gross-Pitaevskii
(GP) equation based on model order reduction strategies from the perspectives of symplectic and
invariant-preserving methods. First, through spatial pseudospectral and temporal Gauss Runge-Kutta
discretization, we construct a time high-order accurate symplectic full-order model for the canonical
Hamiltonian structure of the GP equation. By using symplectic proper orthogonal decomposition
based on Galerkin projection, combined with discrete empirical interpolation techniques, we propose
a reduced-order model that not only preserves the symplectic structure but also significantly reduces
computational complexity, thereby greatly decreasing the computational cost of high-order schemes.
Second, for the two-dimensional rotating GP equation, we design reduced-order models that preserve
either discrete energy or mass, based on canonical and non-canonical Hamiltonian structures,
respectively. By integrating discrete empirical interpolation techniques and tensor methods, we
further reduce the computational complexity of the nonlinear terms, enhancing the computational
efficiency of high-dimensional conservative schemes. Finally, numerical experiments verify the

effectiveness, conservation properties, and efficiency of the proposed methods.
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Numerical methods and analysis for highly
oscillatory dispersive PDEs

LHE JLRUmEAE

Abstract: Highly oscillatory dispersive PDEs, such as Klein-Gordon equation in the non-relativistic
limit, Dirac equation in the non-relativistic limit, Schrodinger equation in the semi-classical limit,
arise from many different areas, e.g. computational chemistry, plasma physics, quantum mechanics.
These oscillatory PDEs usually exhibit solutions with high frequency waves in time and/or in space,
and are generally computational expensive. In this talk, we report some recent advances on the

numerical methods and analysis for some typical highly oscillatory dispersive PDEs.

WENBIN: HHH, AR EEE, ARV L T A0, 2012 FE7ER Nk
SERFIRHE LA, 2016 FENIEWGSNEEIRAA S RIEFEIUH o Ath s J5 75 B e -F K
SRS Ty B2 R AR B A AR K S N S L AR, M 2016 2 2019 4
FEAHOTH SRR A A CAT RIS A 03 25 53 B3 10— OB 0 R 3 = (k3 D7 AR R B T
EREAE BT S RIR A, £ MCOM. JCP Al SIAM R A5 HF] LR R 60 4
R, BUCZEBINFEARSL, FHAE SCiCADE2019 Al ICOSAHOM2023 _EAFE K& 4%

M) Anderson RS L KN
MRooHE B (8 TR KA
E: Anderson JIE VL HPE K% D.G. Anderson 2% 1963 FE42H, M 5 1ZniE H k15

B2 B, (HR T Anderson IR S USRS B A4 30 45 B« R IR S #5448 Anderson
TN By ) d b a3 e DA AR JFRAR T8, 45 JUART 9 Mt DA IR B 2 ST R R N

WENES: BRoHE, FaUE R TR, R, il TSR EM SRR RS, 2 AURK
FrEl TR e BB UG 7 R B M S BUE TR, LRI S b AR S LA
oy WREEA PRI . HATC e E R BRR AR S H R ST 1 .



Improved uniform error bounds on time-splitting methods
for long-time dynamics of dispersive PDEs

VTR S S PN 2

Abstract: In this talk, I begin with the nonlinear Klein-Gordon equation (NKGE) with weak
nonlinearity, which is characterized by &2 with € € (0,1] a dimensionless parameter. Different
numerical methods are applied to discretize the NKGE including finite difference methods,
exponential wave integrators and time-splitting methods. Especially, we discretize the NKGE by the
second-order time-splitting method in time and combine with the Fourier spectral method in space.
By introducing a new technique--Regularity Compensation Oscillation (RCO) which controls the
high frequency modes by the regularity of the exact solution and analyzes the low frequency modes
by phase cancellation and energy method, we carry out the improved uniform error bounds for the
time-splitting methods. The results have been extended to other dispersive PDEs including the

(nonlinear) Schrodinger equation and Dirac equation.
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Determining sources in the bioluminescence
tomography problem

FERTT MR NIEIR K

Abstract: In this talk, we revisit the bioluminescence tomography (BLT) problem, where one seeks
to reconstruct bioluminescence signals (an internal light source) from external measurements of the
Cauchy data. In the literature, BLT is extensively studied based on diffusion approximation equation,
where the distribution of peak sources is to be reconstructed and no solution uniqueness is guaranteed
without adequate a priori information. Motivated by the solution uniqueness issue, a new coupled

model is proposed and several theoretical results are explored.
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Thermodynamically consistent hybrid computational
models for fluid-particle interactions

B F RIS AR R

Abstract: In this talk, we will introduce a novel computational framework designed to explore the
dynamic interactions between fluid and solid particles or structures immersed in a viscous fluid
medium adhering to the generalized Onsager principle. This innovative framework harnesses the
power of the phase-field-embedding method, in which each solid component, whether rigid or elastic,
is characterized by a volume-preserving phase field. This approach facilitates the development of a
hybrid, thermodynamically consistent hydrodynamic model applicable to both rigid and elastic
particles. To numerically solve this thermodynamically consistent model for elastic particles, we
present a structure-preserving numerical algorithm. Notably, in the limit of an infinite elastic modulus,
this algorithm converges to the one employed for modeling rigid particles. Finally, we substantiate
the effectiveness, accuracy, and stability of our proposed scheme through a series of numerical
experiments. These experiments not only validate the computational framework but also showcase

its capabilities, reinforcing the reliability of our approach. This is a joint work with Prof. Q1 Wang.
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An inverse potential problem in a variable order time-fractional
diffusion equation

FEAE LA

Abstract: This talk deals with an inverse problem on determining a time dependent potential in a
diffusion equation with temporal fractional derivative of variable order from a distributed observation.
We shall study the existence, uniqueness and regularity estimates of the solution for the forward
problem by utilizing the Freldhom alternative principle for compact operators. Based on a newly
established coercivity for fractional derivatives of variable order, we prove a uniqueness result for the
inverse potential problem. Numerically, we transform the inverse potential problem into an
optimization problem with Tikhonov regularization. An iterative thresholding algorithm is proposed
to find the minimizers by a newly constructed adjoint system, whose wellposedness is also verified.
Several numerical experiments are presented to show the accuracy and efficiency of the proposed

algorithm.
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Multiscale topology optimization method for lattice materials
FE VAR

Abstract: In this talk, we will introduce an efficient multiscale topology optimization method for
lattice materials. In macro-scale, we present a second-order unconditionally energy stable schemes
for the topology optimization problem. Using porous media approach, our objective functional
composes of five terms including mechanical property, Ginzburg-Landau energy, two penalized terms
for solid and the volume constraint. A Crank-Nicolson method is proposed to discrete the coupling
system. We prove that our proposed scheme is unconditionally energy stable. In macro-scale, we
propose a simple volume merging method for triply periodic minimal structure. A modified Allen—

Cahn type equation with a correction term is proposed. The mean curvature on the surface will be



constant everywhere at the equilibrium state. Computational experiments are presented to

demonstrate the efficiency of the proposed method.
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Average energy dissipation rates of explicit exponential
Runge-Kutta methods for gradient flow problems

B R RS R K

Abstract: We propose a unified theoretical framework to examine the energy dissipation properties
at all stages of explicit exponential Runge-Kutta (EERK) methods for gradient flow problems. The
main part of the novel framework is to construct the differential form of EERK method by using the
difference coefficients of method and the so-called discrete orthogonal convolution kernels. As the
main result, we prove that an EERK method can preserve the original energy dissipation law
unconditionally if the associated differentiation matrix is positive semi-definite. A simple indicator,
namely average dissipation rate, is also introduced for these multi-stage methods to evaluate the
overall energy dissipation rate of an EERK method such that one can choose proper parameters in
some parameterized EERK methods or compare different kinds of EERK methods. Some existing
EERK methods in the literature are evaluated from the perspective of preserving the original energy
dissipation law and the energy dissipation rate. Some numerical examples are also included to support

our theory.
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An asymptotic preserving scheme for the defocusing Davey-
Stewartson II equation in the semiclassical limit

B mEMa s

Abstract: We are devoted to constructing new numerical method for the semiclassical limit of the
defocusing Davey-Stewartson II equation. We introduce Wentzel-Kramers-Brillouin ansatz for the
equation, and the phase-amplitude reformulation is a modified Madelung transform in fact.
Meanwhile, adding some asymptotically vanishing viscosity to obtain approximatively the solution
on arbitrary time intervals for £>0. Note that the asymptotic preserving (AP) scheme exists an non-
local potential on the inverse elliptic operator, and we apply Sine spectral method to avoid the singular
symbol appears in the Fourier space. The Sine spectral method not only gives spectral accuracy in
space, but also minimizes the numerical dissipation in this context. Moreover, we demonstrate the
system is always locally well-posed in a class of Sobolev spaces, and indeed AP. Before the formation
time of oscillations, numerous experiments corroborate the fact that the time-splitting spectral method

is uniformly accurate with order 2 in time and with spectral in space accuracy.
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Multiple terms identification of time fractional diffusion equation with
symmetric potential from nonlocal observation

FRESL UM )TMESE R B

Abstract: This talk considers a simultaneous identification problem of a time-fractional diffusion
equation with a symmetric potential, which aims to identify the fractional order, the potential function
and the Robin coefficient from a nonlocal observation. Firstly, the existence and uniqueness of the
weak solution is established for the forward problem. Then, by the asymptotic behavior of the Mittag-
Leffler function, the Laplace transform, and the analytic continuation theory, uniqueness of the
simultaneous identification problem is proved under some appropriate assumptions. Finally, the
Levenberg-Marquardt method is employed to solve the simultaneous identification problem for
finding stablly approximate solutions of the fractional order, the potential function and the Robin
coefficient. Numerical experiments for three test cases are given to demonstrate the effectiveness of

the presented inversion method.
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Regularity mechanism of nonlinear Schrodinger equations
with rough potential

RIEK RERFE

Abstract: We consider the nonlinear Schrodinger equation with rough potential, which is often
referred as the disordered NLS, and arises from the background of Anderson localization. In this talk,

we focus on the regularity mechanism, and its related numerical discretization of the model.
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Inverse scattering problems of the biharmonic Schrodinger operator
with a first order perturbation

TRA LR

Abstract: In this talk, we will discuss an inverse scattering problems for the biharmonic Schrédinger
operator in three dimensions. A stability estimate of determining the divergence-free part of the
operator is derived by far-field data at multiple wavenumbers. As a consequence, we further derive a
quantitative stability estimate of determining the biharmonic Schrddinger operator. Both the stability
estimates improve as the upper bound of the wavenumber increases, which exhibit the phenomenon
of increased stability. Moreover, we obtain the uniqueness of recovering both potential and the first
order perturbation by partial far-field data. The analysis employs scattering theory to obtain an

analytic domain and an upper bound for the resolvent of the fourth order elliptic operator. Notice that



due to an obstruction to uniqueness, the corresponding results do not hold in general for the Laplacian.
This can be explained by the fact that the resolvent of the biharmonic operator enjoys a faster decay

estimate with respect to the wavenumber compared with the Laplacian.
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Auxiliary variable viscosity splitting (AVVS) method
for the incompressible fluid flows

MR RITRHOR

Abstract: We develop a novel energy-stable linear approach, which we term as auxiliary variable
viscosity splitting (AVVS) method, to efficiently solve the incompressible fluid flows. Different from
the projectiontype methods with pressure correction, the AVVS method adopts the viscosity splitting
strategy to split the original momentum equation into an intermediate momentum equation without
divergence-free constraint and a advection-free momentum equation. A time-dependent auxiliary
variable which has exact value 1 is introduced to construct a supplementary equation. The new model
not only inherits the same dynamics of original incompressible Navier—Stokes equations, but also
facilitate us to design linearly decoupled and energy-stable time-marching scheme. Comparing with
the projection-type schemes, the present method leads to an energy dissipation law with respect to
kinetic energy instead of an augmented energy including velocity and pressure gradient. In each time
step, only two parabolic equations with constant coefficients and one Poisson equation need to be
solved. Therefore, the numerical implementation is highly efficient. Moreover, the proposed AVVS
method can be directly extended to construct linear, decoupled, and energystable scheme for the
turbidity current system after we slightly modify the right-hand side of supplementary equation.
Extensive numerical experiments are implemented to validate the accuracy, energy stability, and

capability in complex fluid simulations.
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Numerical methods for the logarithmic Dirac equation
VBN EPNE

Abstract: In this talk, we consider numerical methods to tackle numerical challenges for solving the
logarithmic Dirac equation (LogDiracE). To address this, we propose a regularized LogDiracE with
the linear convergence to the LogDiracE concerning a small regularization parameter for the bounded
domain case. Then, a semi-implicit finite difference method, PINN method and FNO method are
introduced to consider the regularized LogDiracE. These approaches guarantee a controlled solution
that facilitates reliable simulations without succumbing to the logarithmic nonlinearity challenges for

the LogDiracE.
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Optimal zero-padding of kernel truncation method
K REREE

Abstract: The kernel truncation method (KTM) is a commonly-used algorithm to compute the
convolution-type nonlocal potential, where the convolution kernel might be singular at the origin
and/or far-field and the density is smooth and fast-decaying. In KTM, in order to capture the Fourier
integrand's oscillations that is brought by the kernel truncation, one needs to carry out a zero-padding
of the density, which means a larger physical computation domain and a finer mesh in the Fourier
space by duality. The empirical fourfold zero-padding [ Vico et al. J. Comput. Phys. (2016) | puts a

heavy burden on memory requirement especially for higher dimension problems. In this paper, we



derive the optimal zero-padding factor, that is, Vd+1, for the first time together with a rigorous proof.
The memory cost is greatly reduced to a small fraction, i.e., [[(Vd+1)/4]) ~d, of what is needed in
the original fourfold algorithm. For example, in the precomputation step, a double-precision
computation on a 256”3 grid requires a minimum 3.4, Gb memory with the optimal threefold zero-
padding, while the fourfold algorithm requires around 8 Gb where the reduction factor is around 60%.
Then, we present the error estimates of the potential and density in d space dimension. Next, we re-
investigate the optimal zero-padding factor for the anisotropic density. Finally, extensive numerical
results are provided to confirm the accuracy, efficiency, optimal zero-padding factor for the
anisotropic density, together with some applications to different types of nonlocal potential, including
the 1D/2D/3D Poisson, 2D Coulomb, quasi-2D/3D Dipole-Dipole Interaction and 3D quadrupolar

potential.
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