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Learning complex cellular dynamics from time-series single-cell sequencing

data
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Emerging time-series single-cell RNA sequencing (scRNA-seq) data provide unprecedented
opportunities to study dynamic processes of cell populations. However, dynamic inference based
on time-series SCRNA-seq data is challenging due to the destructive nature of single-cell
sequencing. It remains a computational challenge to link the scRNA-seq snapshots sampled at
different time points. This requires the development of mathematical models and machine learning
methods capable of reconstructing cell population dynamics and global landscape. Optimal
transport (OT) is a powerful tool for the analysis of complex data, as it learns an optimal cost-
effective mapping between data distributions. In this talk, I will present our recent work on
developing the OT-based machine learning framework for inferring the cellular dynamics and the
underlying cell-cell interactions from time-series sScCRNA-seq data. Our framework not only
facilitates accurate predictions, but also improves interpretability.
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Unveiling the Complex Biological Systems: New Horizons in Solution
Landscapes
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Biological systems are often characterized by nonlinear interactions, feedback loops, and the
ability to adapt and evolve, making them challenging to study and model. Energy landscape has
been widely applied to many biological systems. A long standing problem in computational
physics is how to search for the entire family tree of possible stationary states on the energy
landscape without unwanted random guesses? Here we introduce a novel concept “Solution
Landscape”, which is a pathway map consisting of all stationary points and their connections. We
develop a generic and efficient saddle dynamics method to construct the solution landscape, which
not only identifies all possible minima, but also advances our understanding of how a complex
system moves on the energy landscape. As illustrations, we apply the solution landscape approach
to study two problems: One is construction of the solution landscapes of gene regulatory networks
in cell fate decisions, and the other one is to construct the solution landscape of reaction-diffusion
systems, which reveals a nonlinear mechanism for pattern formation beyond Turing instability.
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Inferring Cell Population Dynamics Using Lineage Tracing and Flow
Cytometry Data
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In cellular dynamics research, obtaining time-series data on cell populations is often
challenging, leading to mismatches between data structures and model variables. This talk will
present the work of our research group on parameter estimation in cellular dynamics, specifically
addressing these challenges. We focus on two types of experimental data: lineage tracing and flow

cytometry proportions. For each data type, we discuss methodologies for inferring dynamic
parameters and highlight how these approaches improve the accuracy of cellular behavior models.
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