报告题目:Path-Distribution Dependent Stochastic Hamiltonian System
报告人:黄兴 助理教授
报告时间:2021年12月31日(星期五)下午14:00-15:00
报告地址:腾讯会议488-925-076
邀请人:吕广迎 教授
报告摘要:By Girsanov's thoerem and using the existing log-Harnack inequality for distribution independent degenerate functional SDEs, the log-Harnack inequality is derived for path-distribution dependent stochastic Hamiltonian systems. As an application, the exponential ergodicity in Wasserstein distance and in relative entropy are obtained by combining with transportation inequality. In addition, when the drift is H\{o}lder continuous, the rate of propagation of chaos is obtained.
报告人简介:黄兴,助理教授,北京师范大学概率论与数理统计专业本-硕-博研究生毕业,师从王凤雨教授,现为天津大学应用数学中心讲师。黄兴博士的研究方向包括随机分析、随机微分方程、泛函不等式、微分流形等,在数学及概率论的著名期刊JDE、SPA、JEE等杂志上发表文章20余篇。
研究方向:随机分析、随机微分方程。
欢迎广大师生踊跃参加!
南京信息工程大学数学与统计学院
2021年12月28日



